Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal dimension and canonical splittings of hyperbolic groups

We prove a general criterion for a metric space to have conformal dimension one. The conditions are stated in terms of the existence of enough local cut points in the space. We then apply this criterion to the boundaries of hyperbolic groups and show an interesting relationship between conformal dimension and some canonical splittings of the group.

متن کامل

Conformal Dimension and Random Groups

We give a lower and an upper bound for the conformal dimension of the boundaries of certain small cancellation groups. We apply these bounds to the few relator and density models for random groups. This gives generic bounds of the following form, where l is the relator length, going to infinity. (a) 1 + 1/C < Cdim(∂∞G) < Cl/ log(l), for the few relator model, and (b) 1 + l/(C log(l)) < Cdim(∂∞G...

متن کامل

Metric Conformal Structures and Hyperbolic Dimension

For any hyperbolic complex X and a ∈ X we construct a visual metric ď = ďa on ∂X that makes the Isom(X)-action on ∂X bi-Lipschitz, Möbius, symmetric and conformal. We define a stereographic projection of ďa and show that it is a metric conformally equivalent to ďa. We also introduce a notion of hyperbolic dimension for hyperbolic spaces with group actions. Problems related to hyperbolic dimensi...

متن کامل

On Hyperbolic Groups with Spheres as Boundary

Let G be a torsion-free hyperbolic group and let n ≥ 6 be an integer. We prove that G is the fundamental group of a closed aspherical manifold if the boundary of G is homeomorphic to an (n − 1)-dimensional sphere.

متن کامل

Hyperbolic groups with 1-dimensional boundary

If a torsion-free hyperbolic group G has 1-dimensional boundary ∂∞G, then ∂∞G is a Menger curve or a Sierpinski carpet provided G does not split over a cyclic group. When ∂∞G is a Sierpinski carpet we show that G is a quasiconvex subgroup of a 3-dimensional hyperbolic Poincaré duality group. We also construct a “topologically rigid” hyperbolic group G: any homeomorphism of ∂∞G is induced by an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2005

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2005.9.219